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We consider a type of intermittent behavior that occurs as the result of the interplay between dynamical
mechanisms giving rise to type-I intermittency and random dynamics. We analytically deduce the laws for the
distribution of the laminar phases, with the law for the mean length of the laminar phases versus the critical
parameter deduced earlier �W.-H. Kye and C.-M. Kim, Phys. Rev. E 62, 6304 �2000�� being the corollary fact
of the developed theory. We find a very good agreement between the theoretical predictions and the data
obtained by means of both the experimental study and numerical calculations. We discuss also how this
mechanism is expected to take place in other relevant physical circumstances.
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I. INTRODUCTION

Intermittency is known to be an ubiquitous phenomenon
in nonlinear science. Its arousal and main statistical proper-
ties have been studied and characterized already since a long
time ago, and different types of intermittency have been clas-
sified as types I–III �1,2�, on-off intermittency �3–6�, eyelet
intermittency �7–9�, and ring intermittency �10�.

From the other side, increasing interest has been put re-
cently in the study of the constructive role of noise and fluc-
tuations in nonlinear dynamical systems. In particular, it was
discovered that random fluctuations can actually induce
some degree of order in a large variety of nonlinear systems
�11–13�, and such phenomena were widely observed in rel-
evant physical, chemical, and biological circumstances
�8,14–16�.

There are no doubts that different types of intermittent
behavior may take place in the presence of noise and fluc-
tuations in a wide spectrum of systems, including cases of
practical interest for applications in radio engineering, medi-
cal, physiological, and other applied sciences. It is plausible
that such an interaction would originate new types of dynam-
ics. Therefore, the intermittent behavior in the presence of
noise has been studied by means of Fokker-Plank equation
�17� and adopting renormalization group analysis �18�, but
the characteristic relations were obtained only in the subcriti-
cal region, where the intermittent behavior is observed both
in the presence of noise and without noise. Recently �19�, the
theoretical consideration of the intermittent behavior in the
presence of noise has been considered in the supercritical
region �where intermittency is absent in the absence of
noise�, with the analytical form of the dependence of the
mean length of the laminar phases versus the critical param-
eter being deduced under the assumption of the fixed rein-
jection probability taken in the form of a � function. More-
over, the found analytical law has been verified by means of
the experimental observation of the characteristic relations of
intermittency in the presence of noise �20,21�. At the same
time, the other important statistical characteristic of the in-
termittent behavior, namely, the distribution of the laminar
phase lengths, has not been obtained hitherto for the super-
critical parameter region.

In this paper we report the form of the distribution of the
lengths of the laminar phases deduced analytically for the
type-I intermittency in the presence of noise for the region of
the supercritical parameter values. The already known de-
pendence of the mean length of the laminar phases on the
criticality parameter �19,20� follows as a corollary of the
carried out research. Moreover, we prove that this depen-
dence obtained in �19� under the assumption of the fixed
reinjection probability taken in the form of � function does
not depend practically on the relaminarization properties,
and, correspondingly, the obtained expression of the mean
length of the laminar phases on the criticality parameter re-
mains correct for different forms of the reinjection probabil-
ity. The obtained analytical distribution of the laminar phase
length is verified by means of both numerical calculations of
the model system dynamics and experimental observations.

The structure of the paper is the following. In Sec. IIwe
describe the theory of the type-I intermittency with noise and
give the theoretical predictions for the distributions of the
laminar phase length. In Sec. III we describe the dynamical
systems used to illustrate our conclusions. We show numeri-
cally that our theoretical predictions are observed in the dif-
ferent nonlinear systems, including coupled chaotic oscilla-
tors near the boundary of the phase synchronization in the
case of small detuning of the natural frequencies. Finally, in
Sec. IV we give the description of the experimental setup for
the measurement of the characteristics of the type-I intermit-
tency in the presence of noise. The final conclusions are
given in Sec. V.

II. THE THEORY OF THE TYPE-I INTERMITTENCY IN
THE PRESENCE OF NOISE

The standard model that is used to study the type-I inter-
mittency �1� is the one-parameter quadratic map

xn+1 = f�xn� = xn + xn
2 + � , �1�

where � is a control parameter. The value of �c=0 corre-
sponds to the saddle-node �tangential� bifurcation when the
stable and unstable points xu,s= ±�1/2 touch each other in
x=0 and disappear.
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Below the critical parameter value �i.e., for ���c�, the
stable fixed point xs=−�1/2 is observed, while above �c a
narrow corridor between the function f�x� and the bisector
xn+1=xn exists, such that the point representing the state of
the map �1� moves along it �Fig. 1�. This movement corre-
sponds to the laminar phase, its mean length T being in-
versely proportional to the square root of ��−�c�, i.e.,

T � �� − �c�−1/2. �2�

To develop the theory of type-I intermittency in the pres-
ence of noise, we consider the same quadratic map �1� with
the addition of a stochastic term �n,

xn+1 = xn + xn
2 + � + �n, �3�

where �n is supposed to be a � correlated white noise ���n�
=0, ��n�m�=D��n−m��.

The influence of the stochastic term �n on the behavior of
the system is governed by the value of parameter D. For
positive values of the control parameter � ���0�, the point
corresponding to the behavior of system �3� moves in the
iteration diagram along the narrow corridor, its motion being
perturbed by the stochastic force. As far as the intensity of
the noise is not large, the characteristics of classical type-I
intermittency are observed.

A different scenario occurs for control parameters � as-
suming negative values ��=−�, where �= �� � �0�. In this
case, the point corresponding to the behavior of system �3� is
localized for a long time in the region x�xc=�1/2 and its
dynamics is also perturbed by the stochastic force. As soon
as the system state point arrives at the boundary xc=�1/2 due
to the influence of noise, a turbulent phase arises, though
such kind of events is very rare.

In this case, the behavior of the map �3� differs radically
from the dynamics of the system �1�, since the turbulent
phases are not observed for ��0 if there is no noise. There-
fore, such a region of negative values of the � parameter is
the main subject of interest for the type-I intermittency in the
presence of noise.

Having supposed that �i� the value of � is negative and
rather small and �ii� the value of x changes per one iteration
insufficiently, we can consider �xn+1−xn� as the time deriva-

tive ẋ and undergo from the system with discrete time �3� to
the flow system, in the same way as in the case of the clas-
sical theory of the type-I intermittency.

Since the stochastic term is present in �3� we have to
examine the stochastic differential equation

dX = �X2 − ��dt + dW �4�

�where X�t� is a stochastic process, W�t� a one-dimensional
Winner process, �= ���� instead of the ordinary differential
equation dx /dt=x2+� considered in the classical theory of
type-I intermittency.

The stochastic differential equation �4� is equivalent to the
Fokker-Plank equation

��X�x,t�
�t

= −
�

�x
��x2 − ���X�x,t�� +

D

2

�2�X�x,t�
�x2 �5�

for the probability density �X�x , t� of the stochastic process
X�t�. Contrarily to what was done in Ref. �19� �where the
backward Fokker-Plank equation was used�, we here con-
sider the forward one that allows us to obtain the explicit
form of the distribution of the laminar phase lengths. The
chosen initial condition is �X�x ,0�=��x�, where ��·� is a �
function. Such choice of the initial form of the probability
density �X�x ,0� corresponds to the beginning of the laminar
phase, when the point representing the state of the system �3�
is in the place with coordinate x=0 at time t=0. In other
words, we suppose that the reinjection probability is a �
function

Pin�x� = ��x� �6�

and after the relaminarization process the system is always
returned to the state x=0. Although the reinjection probabil-
ity Pin�x� is well known to be an important factor and should
be taken into account when the statistical properties of the
intermittent behavior are studied �22,23�, in the considered
problem the form of the reinjection probability practically
does not influence on the distribution of the laminar phase
lengths �and the dependence of the mean laminar phase
length on the criticality parameter, respectively�, as it will be
shown below.

To reduce the number of the control parameters the nor-
malization z=x /	�, 	= t	� may be used, after which Eq. �5�
may be rewritten in the form

��Z�z,	�
�	

= −
�

�z
��z2 − 1��Z�z,	�� +

D*

2

�2�Z�z,	�
�z2 , �7�

where D*=D�−3/2, �Z�z ,	�=�X�z�1/2 ,	�−1/2�.
As the coordinate of the system state stays for a long time

in the region z�zc=1, one can suppose that the probability
density may find the form of the metastable distribution de-
caying slowly for a long period of time. The relaxation pro-
cess of the probability density to this metastable state is sup-
posed to be very fast in comparison with the time of the
metastable distribution decay, therefore, one can neglect the
transient 0
 t
 ttr. Under the assumptions made above the
probability density may be written in the form �Z�z ,	�

xn

xn+1

x n
+
1
=
x n

a

xn

xn+1

x n
+
1
=
x n

b

−ε1/2
ε1/2

0

FIG. 1. �Color online� The iteration diagram for map �1� �a� �
�0 and �b� ��0. The stable xs=−�1/2 and unstable xu=�1/2 fixed
points of Eq. �1� are shown by • and °, respectively
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=A�	�g�z�, ∀z
1, where A�	��0 decreases very slowly as
time increases, i.e., dA /d	
0. The function g�z� should sat-
isfy the conditions

g�z� � 0 ∀ z � 1 and �
−�

1

g�z�dz � � . �8�

As the maximum of the probability density should coincide
with the stable fixed point zs=−1, one has

�g��z��z=−1 = 0. �9�

Under the mentioned assumption, we consider the ordinary
differential equation

D*g��z� − 2��z2 − 1�g�z��� = 0 �10�

instead of Eq. �7� for the region z�1.
This equation is equivalent to

D*g��z� − 2�z2 − 1�g�z� + C1 = 0, �11�

where C1 is constant. To solve this equation we use the in-
tegrating factor

M�z� = exp�−
2

D* z3

3
− z�� . �12�

The solution of Eq. �11� may be found in the form

g�z� =

C1�
0

z

exp� 2

D*s −
s3

3
��ds + C2

D* exp� 2

D*z −
z3

3
�� . �13�

From Eq. �13� one can obtain easily that g��−1�=C1 /D*.
Taking into account the condition �9�, one comes to the con-
clusion that C1�0. Note, in this case the obtained function

g�z� =
C2

D* exp�−
2

D*z −
z3

3
�� �14�

also satisfies the conditions �8�. Therefore, the probability
density �Z�z ,	� in the region z�1 is

�Z�z,	� � A�	�exp�−
2

D*z −
z3

3
�� . �15�

The decrease of A�	� should be determined by the probability
distribution taken in the boundary point z=1, i.e., dA�	� /d	
�−�Z�1,	�. This assumption, which is also equivalent to ne-
glecting the time correlation of the orbit, may be rewritten as

dA�	�
d	

= − kA�	�exp−
4

3D*� , �16�

where k is a proportionality coefficient. Evidently, the de-
crease of A�	� is described by the exponential law

A�	� = A�0�exp�− k�	�, � = exp�− 4/�3D*�� , �17�

that is equivalent to the exponential law for the laminar
phase distribution, as it will be shown momentarily.

Having returned to the initial variables x and t we derive
the following expression for the probability density

�X�x,t� � A�t�exp�−
2

D
�x −

x3

3
�� �18�

obtained by setting the probability current C1=0, where

A�t� = A�0�exp−
t

T
� �19�

and

T =
1

k	�
exp4�3/2

3D
� , �20�

with A�t� being considered as a normalizing factor, i.e.,

A�0��
−�

	�

exp�−
2

D
�x −

x3

3
��dx = 1. �21�

To confirm the assumptions made above and the obtained
equations, we have compared the evolution of the probability
density �X�x , t� given by Eq. �18� with the result of the direct
numerical calculation of the Fokker-Plank equation �5� with
the values of control parameters �=10−2, D=2.510−4.

The evolution of the probability density �X�x , t� obtained
by the numerical calculation of Eq. �5� is shown in Fig. 2.
One can see that after the very short transient 0
 t
 ttr the
probability density �X�x , t� arrives the state being close to
stationary �Fig. 2�a��. After that the value of �X�x , t� de-
creases very slowly �according to the exponential law� with
time increasing, with the form of the dependence of the prob-
ability density on x coordinate being invariable �Fig. 2�b��.

Figure 3 also shows the profiles of the probability density
�X�x , t*� taken in the different moments of time. It is evident,
that after a very short transient �curve 1, t1

*=10�, the density
�X�x , t� practically does not change when time increases.

Two different profiles �X�x , t*� corresponding to the time
moments t2

*=3101 and t3
*=2104 �curves 2 and 3, respec-

tively� are very close to each other despite of the very large
time interval �t= t3

*− t2
* between them. Moreover, they are in

very good agreement with the approximated solution
A�0�g�x� described by Eq. �18� and shown in Fig. 3 by
means of squares. As time goes on, the amplitude of the
probability density decreases according to the exponential
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FIG. 2. �Color online� The evolution of the probability density
�X�x , t� obtained by means of the direct numerical integration of
Fokker-Plank equation �5�, �=10−2, D=2.510−4. �a� The initial
fragment of the density evolution involving the transient �0
 t
� ttr, ttr
30�. �b� The long-time evolution of �X�x , t�, with the tran-
sient being omitted, t�50.
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law, but very slowly �see Fig. 3, curves 4 and 5, t4
*=2.5

105 and t5
*=106, respectively�, although the probability

density form remains the same for all times.
Therefore, taking into account the results of the direct

numerical calculations of Fokker-Plank equation �5� and the
comparison with the obtained approximated solution �18�,
we come to the conclusion that our assumptions are correct
and can be used for the further analysis.

The evolution of the probability density �X�x , t� may be
considered separately on two time intervals 0
 t� ttr and
ttr
 t� +�, respectively. The first time interval corresponds
to the transient when the probability density �X�x , t� evolves
to the form �18� being close to stationary. Only when 0
 t
� ttr the form of the reinjection probability Pin�x� may influ-
ence on the evolution of the probability density �X�x , t�. For
t� ttr �when the transient is elapsed�, the evolution of the
probability density is defined completely by Eq. �18� and it
does not depend entirely on the reinjection probability Pin�x�.
Since the transient is very short in comparison with the ex-
ponential decrease of the probability density �X�x , t� we can
neglect them and use only the second time interval ttr
 t�
+� to obtain the statistical characteristics of the type-I inter-
mittent behavior in the presence of noise. It is clear that in
this case the obtained results do not depend on the relami-
narization process and the reinjection probability Pin�x�.

The distribution p�t� of the laminar phase lengths t may
be defined from the relationship between �X�x , t� and p�t�,

p�t� = − �
−�

	� ��X�x,t�
�t

dx . �22�

Using relations �18�, �19�, and �21� one can obtain that the
laminar phase distribution is governed by the exponential
law

p�t� = T−1 exp�− t/T� , �23�

where T defined by Eq. �20� is the mean length of the lami-
nar phases. The obtained expression �20� for the mean length

T of the laminar phases is consistent with the formal solution
T��−1/2f��2�−3/2� derived in the previous considerations
�17,18,24� and coincides with the formula of T given in �19�.
If the criticality parameter � is large enough, the approximate
equation ln T�D−1�3/2 may be used �see �19� for detail�.
Based on the consideration carried out above we state that
Eqs. �20� and �23� do not depend practically on the relami-
narization process properties and may be used for the arbi-
trary reinjection probability Pin�x�.

III. SAMPLE SYSTEM DYNAMICS

To verify the obtained theoretical predictions, we consider
numerically two different dynamical systems showing type-I
intermittency, with a stochastic force being added. As such
test systems we have selected �i� the quadratic map and �ii�
driven Van der Pol oscillator.

A. Quadratic map with stochastic force

We start considering the interplay between type-I inter-
mittency and noise using the quadratic map

xn+1 = xn
2 + � + � + D�n, mod 1, �24�

where the “mod 1” operation is used to provide the return of
the system in the vicinity of the point x=0; �=0.25, and the
probability density of the stochastic variable � is distributed
uniformly on the interval �� �−1,1�. The map �24� may be
brought to Eq. �3� with the help of a linear variable transfor-
mation. If the intensity of noise D is equal to zero the saddle-
node bifurcation is observed for �=0. The type-I intermittent
behavior is observed for ��0, whereas the stable fixed point
takes place for ��0. Having added the stochastic force D
=10−7 in Eq. �24� we can expect that the intermittent behav-
ior may be also observed in the area of the negative values of
the criticality parameter �.

The dependence of the mean laminar phase length T on
the criticality parameter below the point �c=0 is shown in
Fig. 4. To compare it with the obtained theoretical prediction
ln T�D−1�3/2 the abscissa in Fig. 4�a� has been selected in
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5

FIG. 3. �Color online� The profiles of the probability density
�X�x , t*� taken in the different moments of time t* obtained from the
direct numerical calculation of Fokker-Plank equation �5�.
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FIG. 4. �Color online� �a� The dependence of the mean length T
of the laminar phases on the criticality parameter �= ��� ���0� for
Eq. �24�. The points obtained by the iteration of Eq. �24� are shown
by symbols ���. The theoretical law ln T��3/2 is shown by the
solid line. �b� The distribution of the laminar phase lengths for map
�24�, the criticality parameter value has been selected as �=10−11.
The theoretical exponential law �23� is shown by the solid line.
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the �3/2 scale ��= �� � ,��0�, whereas the ordinate axis is
shown in the logarithmic scale. One can see the excellent
agreement between theoretical law �20� and data of numeri-
cal calculation.

The distribution of the laminar phase lengths is also in
very good accordance with the exponential law �23� pre-
dicted by the theory of the type-I intermittency with noise
�see Fig. 4�b��. Note the presence of the small region of the
short laminar phase lengths in Fig. 4�b� where the deviation
from the prescribed exponential law �23� is observed. This
region corresponds to the transient 0
 t� ttr when the prob-
ability density �X�x , t� evolves to the form �18� being close to
stationary as it was discussed in Sec. I. The existence of this
transient time interval does not influence practically on the
characteristics �20� and �23� of the intermittent behavior in
the presence of noise in the full agreement with the conclu-
sions made above.

So, the intermittent behavior observed in the quadratic
map with the stochastic force agrees well with the theoretical
predictions obtained in Sec. I. Since the theory of type-I
intermittency has been developed on the basis of the model
�3� being very close to map �24�, it is mandatory to examine
another system to ensure that our theoretical conclusions are
correct and applicable for a wide spectrum of nonlinear
systems.

B. Van der Pol oscillator driven by the external harmonic
signal in the presence of noise

We consider as a second model the system given by a van
der Pol oscillator

ẍ − �� − x2�ẋ + x = A sin��et� + D��t� �25�

driven by an external harmonic signal with the amplitude A
and frequency �e, with an added stochastic term D��t�,
where ��t� is a � correlated white noise ����t��=0,
���t���	��=��t−	��.

The values of the control parameters are selected to be
�=0.1, �e=0.98. For these control parameters and for D=0,
the dynamics of the driven van der Pol oscillator becomes
synchronized when A=Ac=0.0238. To integrate Eq. �25� the
one-step Euler method has been used with time step h=5
10−4, the value of the noise intensity has been fixed as
D=1.

It is well known that under certain conditions �i.e., for the
periodically forced weakly nonlinear isochronous oscillator�,
the complex amplitude method may be used to find the so-
lution describing the behavior of oscillator �25� without
noise in the form x�t�=Re a�t�ei�t. For the complex ampli-
tude a�t� one obtains the averaged �truncated� equation ȧ=
−i�a+a− �a�2a− ik, where � is the frequency mismatch, and k
is the �renormalized� amplitude of the external force. For the
small � and large k, the stable fixed point on the plane of the
complex amplitude a*=const corresponds to the synchronous
regime, with the synchronization destruction corresponding
to the saddle-node bifurcation associated with the global bi-
furcation of the limit cycle birth �25,26�. Therefore, below

the boundary of the synchronization regime �for small values
of the frequency mistuning�, the dynamics of the phase
difference

���t� = ��t� − �et �26�

�where ��t� is the phase of the driven oscillator� demon-
strates time intervals of phase synchronized motion �laminar
phases� persistently and intermittently interrupted by phase
slips �turbulent phases� during which the value of ����t��
jumps up by 2�. The mean length T of the laminar �synchro-
nous� phases depends on the criticality parameter �= �Ac

−A� according to the power law �2� corresponding to the
type-I intermittency.

If the stochastic term D��t� is added �D�0� the manifes-
tation of the regularities of type-I intermittency with noise
described above is revealed in the parameter range A�Ac
�see Fig. 5�a��. For the negative values of the criticality pa-
rameter � the law ln T�D−1�3/2 is expected to be observed.
To make this law evident, the abscissa in Fig. 5�a� has been
selected in the �3/2-scale ��= ���� and the ordinate axis T is
shown in the logarithmic scale. One can see again the excel-
lent agreement between the numerically calculated data and
theoretical prediction �20�.

The distribution of the lengths of the laminar phases N�t�
obtained for A�Ac also confirms the theoretical results
given above. Indeed, the distribution N�t� shown in Fig. 5�b�
is in very good accordance with the theoretically predicted
exponential law �23�, with the small region of the short lami-
nar phase lengths deviating from the exponential law being
revealed as well as for the discrete map �24� that corresponds
to the short transient taking place after the relaminarization.
Again, as for the discrete map considered in Sec. III A, the
existence of this transient time interval does not distort the
characteristics of the intermittent behavior observed in the
presence of noise.

ε3/2

T
106

b

4x10-5 1.2x10-4 2x10-4
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8x1034x1030 1.2x104

FIG. 5. �Color online� �a� The dependencies of the mean length
T of the laminar phases on the criticality parameter �= �Ac−A� for
the driven van der Pol oscillator with the stochastic force �25�. The
points obtained by the numerical integration of �25� are shown by
symbols �. The theoretical law ln T��3/2 is shown by the solid
line. �b� The distribution of the laminar phase lengths for the driven
van der Pol oscillator, with the amplitude of the external signal A
=0.0245 being taken above the critical point Ac=0.0238 ��=−7
10−4�. The ordinate axis is presented in the logarithmic scale. The
theoretical exponential law �23� is shown by the solid line.
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IV. EXPERIMENTAL OBSERVATION
OF THE CHARACTERISTICS OF TYPE-I

INTERMITTENCY IN THE PRESENCE OF NOISE

In parallel with the numerical analysis of the type-I inter-
mittent behavior with noise we have also studied experimen-
tally the dynamics of the periodic oscillator driven by the
external harmonic signal in the presence of noise to confirm
the theoretical and numerical results given in Sec. I and II. In
the experiment we have used the simple electronic oscillator
where all parameters �including noise amplitude� may be
controlled precisely.

The experimental setup is shown in Fig. 6. The basis el-
ement of the scheme we use the generator with the linear
feedback and nonlinear converter �NC� �27�. The diagram of
the nonlinear converter is shown in Fig. 7. The characteris-
tics of nonlinear converter were controlled with resistor R6
�see Fig. 7�. Since the generator demonstrates both chaotic
and periodic oscillations, the control parameters of it have
been selected in such a way for the generated signal to be
periodic. The frequency of the autonomous periodic oscilla-
tions was 8.805 kHz. As a source of driving harmonic signal

the MOTECH-FG503 functional generator �FG� has been
used. The behavior of the oscillator driven by the external
harmonic signal in the presence of noise was analyzed by
means of the Agilent E4402B spectrum analyzer and L-Card
L-783 analog-digital converter �ADC� PCI-card with 12-bit
resolution.

The noise generator �NG� shown in Fig. 8�a� provides the
noise signal being close to the Gaussian one �28�. The dis-
tribution of noise p�V� is shown in Fig. 8�b�. The intensity of
noise may be controlled easily by means of the variation of
the potentiometer R4.

As well as for Van der Pol oscillator driven by the exter-
nal harmonic signal in the presence of noise �see Sec. III B�
below the boundary of the synchronization regime �for small

to ADC

to spectrum
analyzer

NC

OP1

to ADC

to ADC

C

L

C1

R1 R2
R3

NG FG

OP2

OP3

1 2

FIG. 6. The schematic diagram of the experimental setup. The
control parameters have been selected as the following: R1

=10 ohm, R2=630 ohm, R3=56 ohm, L=3.3 mH, C=150 nF, C1

=330 nF. The operational amplifiers OP1 and OP2 are both of the
TL082 type and the operational amplifier OP3 is of the TDA2030
type.
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FIG. 7. The schematic diagram of the nonlinear converter. The
control parameters have been selected as the following: R1

=2.7 kohm, R2=7.5 kohm, R3=100 ohm, R4=7.5 kohm, R5

=12 kohm, R6=4.7 kohm. The diodes D1 and D2 are of the 1N4148
type. The operational amplifiers OP1 and OP2 are both of the
TL082 type and the operational amplifier OP3 is of the LF356N
type.

ba

-

+

R1R2
R3

R4

R5
C1C2C3

T1

+U

output

D1

OP1

-1.0 1.00.0

V, [V]

p(V)
8.0

4.0

0.0

FIG. 8. �Color online� �a� The schematic diagram of the noise
generator. The control parameters have been selected as the follow-
ing: R1=72 ohm, R2=1 kohm, R3=1 kohm, R4=10 kohm, R5

=10 kohm, C1=1 �F, C2=0.1 �F, C3=470 �F, U=15 V. The di-
ode D1 is of the BZX79-C11 type. The operational amplifier OP1 is
of the TL082 type, the transistor T1 is of the BC546B type. �b� The
distribution p�V� of noise.
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FIG. 9. �Color online� The distributions of the laminar phase
lengths for the driven periodic oscillator in the presence of noise
obtained experimentally. The amplitude Vm of the external signal
and the noise dispersion � have been selected the following: ���
Vm=170 mV, �=475.17 mV; ��� Vm=170 mV, �=298.11 mV;
��� Vm=150 mV, �=141.72 mV. The ordinate axis is presented in
the logarithmic scale. The approximations corresponding to the the-
oretical exponential law �23� are shown by the dashed lines.
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values of the frequency mistuning� the dynamics of the
difference

���t� = ��t� − �e�t� �27�

between the phase of the driven oscillator ��t� and the phase
of the external harmonic signal �e�t� should demonstrate
time intervals of phase synchronized motion �laminar
phases� persistently and intermittently interrupted by phase
slips �turbulent phases� during which the value of ����t��
jumps up by 2�. The distribution of the laminar phase length
is expected to obey to the exponential law �23� predicted by
the theory of the type-I intermittency with noise.

Since the dependence of the mean laminar phase length
on the criticality parameter has already been studied experi-
mentally �20� in our experiment we focus on the consider-
ation of distribution of the laminar phase lengths. These dis-
tributions N�t� obtained experimentally for the different
values of the amplitude Vm of the external harmonic signal
and noise intensity D are shown in Fig. 9. The frequency of
the external harmonic signal has been fixed as f =8.75 kHz,
the values of the amplitude V of the external signal have
been selected in such a way for the driven oscillator to be
synchronized if the intensity of noise is equal to zero, i.e.,
Vm�Vc, where Vc=145 mV is the amplitude of the external
signal corresponding to the synchronization threshold. In the
presence of noise the phase slips are revealed and the inter-
mittent behavior is observed. One can see that the distribu-
tions of the lengths of the laminar phases N�t� are in very
good accordance with the theoretically predicted exponential
law �23�. The small regions of the short laminar phase
lengths where the deviation from the prescribed exponential
law �23� is observed also take place as well as in the case of

the numerical simulations of the model systems considered
in Sec. III. Therefore, we come to conclusion that the experi-
mental observations confirm the obtained theoretical results
concerning the type-I intermittent behavior in the presence of
noise.

V. CONCLUSIONS

In conclusion, we have reported a type of intermittency
behavior caused by the cooperation between the determinis-
tic mechanisms and random dynamics. Having examined
three sample systems both numerically and experimentally
we can conclude that �i� noise induces new features in the
intermittent behavior of a system demonstrating type-I inter-
mittency, with different dynamical properties being observed
above the former value of the criticality parameter; �ii� the
results of numerical simulations and experimental observa-
tions are in excellent agreement with the developed theory;
�iii� the statistical characteristics of the perturbations of
type-I intermittency as well as the relaminarization process
properties and the reinjection probability do not seem to play
a major role. Though the characterization of the intermittent
process has been explicitly derived here for model systems,
we expect that the very same mechanism can be observed in
many other relevant circumstances where the level of natural
noise is sufficient, e.g., in the physiological �29,30� or physi-
cal systems �8�.
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